• Skip to content
  • Skip to primary sidebar

Owl Test Prep

  • Blogs
    • GMAT
    • GRE
  • Courses
  • MATHFACTors
  • The Official Guides
  • Tutoring
  • Tutoring Calendar

Exponents and Roots Quiz

posted on March 8, 2016

This is a set of GMAT PS and DS problems concerning exponents and roots. If you struggle with these problems then you might want to take a content quiz on the fundamentals of exponents and roots. You have 30 mins to complete the 15 questions

Exponents and Roots

Start
Congratulations - you have completed Exponents and Roots. You scored %%SCORE%% out of %%TOTAL%%. Your performance has been rated as %%RATING%%
Your answers are highlighted below.
Question 1
If \(n=\sqrt{\frac{81}{16}}\), then what is the value of \(\sqrt{n}\)?
A
\(\frac{2}{9}\)
B
\(\frac{3}{2}\)
C
\(\frac{9}{4}\)
D
\(4\)
E
\(9\)
Question 1 Explanation: 
Recall the rule \(\sqrt{\frac{A}{B}} = \frac{\sqrt{A}}{\sqrt{B}}\).

So, we get, \(n = \sqrt{\frac{81}{16}} = \frac{\sqrt{81}}{\sqrt{16}} = \frac{9}{4}\).

And don't forget that you need to take the square root of \(n\): \(\frac{\sqrt{9}}{\sqrt{4}}=\frac{3}{2}\).

The correct answer is B.

Question 2
\(\sqrt{{(2)(18)}+{(12)(9)}}\)
A
\(\sqrt{20}\)
B
\(6\)
C
\(8\)
D
\(\sqrt{20}+2\sqrt{2}\)
E
12
Question 2 Explanation: 
You can take a brute force approach: \(\sqrt{36+108} = \sqrt{144} = 12.\)

Or you can get fancy:\(\sqrt{9(4+12)} = \sqrt{(9)(16)} = \sqrt{9}\sqrt{16} = (3)(4) = 12\).

The correct answer is E.

Question 3
\(\sqrt{30 + 42} = \)
A
\(6\sqrt{5 + 7}\)
B
\(12\sqrt{3}\)
C
\(8\)
D
\(6\sqrt{2}\)
E
\(3\sqrt{2}\)
Question 3 Explanation: 
I hope this was a pretty straightforward computation:

\(\sqrt{30 + 42} = \sqrt{72} = \sqrt{(36)(2)} = \sqrt{36}\times{\sqrt{2}} = 6\sqrt{2}\). The correct answer is D.

Question 4
\(\frac{(0.2)^5}{(0.2)^2}=\)
A
\(0.001\)
B
\(0.002\)
C
\(0.008\)
D
\(0.02\)
E
\(0.3\)
Question 4 Explanation: 
When we divide exponential expressions with the same base we take the difference of the exponents and keep the base:

\(\frac{A^x}{A^y} = A^{x-y}\).

If we apply this rule to the problem, we get \((0.2)^{5-2} = (0.2)^3 = (0.2)(0.2)(0.2) = 0.008\).

The correct answer is C.

Question 5
\(\sqrt{63}+\sqrt{28}=\)
A
\(5\sqrt{7}\)
B
\(7\sqrt{5}\)
C
\(10\sqrt{7}\)
D
\(13\sqrt{7}\)
E
\(50\)
Question 5 Explanation: 
GOOD ENOUGH, simplify the roots: \(\sqrt{63}+\sqrt{28} = \sqrt{(9)(7)}+\sqrt{(4)(7)} = \sqrt{9}\sqrt{7}+\sqrt{4}\sqrt{7} = 3\sqrt{7}+2\sqrt{7} = 5\sqrt{7}\)

BETTER, use estimation: \(63\approx{64}\) and \(28\approx{25}\), so \(\sqrt{63}+\sqrt{28} \approx\sqrt{64}+\sqrt{25} = 8+5 = 13\). Estimation is often the most efficient way to solve a problem because numerical answers to GMAT questions are always in order from least to greatest or greatest to least. Here it's clear the answer choices B, C, D, and E are all larger than 13, so the correct answer is A

Question 6
\({(\sqrt{5}+3\sqrt{5})}^2=\)
A
\(20\)
B
\(16\sqrt{5}\)
C
\(50\)
D
\(80\)
E
\(100\)
Question 6 Explanation: 
Recall the rule \(A\sqrt{x}+B\sqrt{x}=(A+B)\sqrt{x}\).

So, \(\sqrt{5}+3\sqrt(5)=4\sqrt{5}\).

Therefore, \({(4\sqrt{5})}^2=16(5)=80\).

The correct answer is D.

Question 7
If \(n\) is an integer, is \({(0.5)}^n>{2}^n\)?

(1) \(n < 5\)

(2) \(n > -5\)

A
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.
B
Statement (2) ALONE is sufficient , but statement (1) alone is not sufficient to answer the question asked.
C
BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient.
D
EACH statement ALONE is sufficient to answer the question asked.
E
Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data are needed.
Question 7 Explanation: 
Statements (1) and (2) alone allow for an infinite number of possible values for \(n\).

In particular \(n = 1\) and \(n = -1\) work for both statements. If \(n = 1\) the answer to the question is NO. If \(n = -1\) the answer to the question is YES.

The correct answer is E.

Question 8
If \(x\) is a positive integer and \(A = 3.2\times{10}^x\), what is the value of \(x\)?

(1) \(40,000< A < 3,000,000\).

(2) \(\sqrt[4]{A}=20\sqrt[4]{2}.\)

A
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.
B
Statement (2) ALONE is sufficient , but statement (1) alone is not sufficient to answer the question asked.
C
BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient.
D
EACH statement ALONE is sufficient to answer the question asked.
E
Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data are needed.
Question 8 Explanation: 
First, convert all values to scientific notation: \(40,000 = {4.0}\times{{10}^4}\) and \(3,000,000 = {3.0}\times{{10}^6}\). If \(x = 4\), then \(A\) is less than \(40,000\), and if \(x = 6\), then \(A\) is greater than \(3,000,000\).

So, we know \(x = 5\). Thus, statement (1) is sufficient. Statement (2) may look a bit intimidating, however, this is a data SUFFICIENCY question, and given some time and/or a calculator, we COULD find \(A\). So, statement (2) is also sufficient.

The correct answer is D.

Question 9
Is \(x\) an integer?

(1) \({x}^3\) is an integer.

(2) \(\sqrt[3]{x}\) is an integer.

A
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.
B
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked.
C
BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient.
D
EACH statement ALONE is sufficient to answer the question asked.
E
Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data are needed.
Question 9 Explanation: 
Statement (1) is insufficient. Consider the following examples \(x = \sqrt[3]{2}\), and \(x = 2\). In the former \(x\) is not an integer, but \({x}^3\) is an integer. In the latter example \(2\) is an integer and \({2}^3\) is also an integer.

A little algebra makes it clear that statement (2) is sufficient :

\(\sqrt[3]{x} = integer\)

\({\sqrt[3]{x}}^3 = {integer}^3\)

\(x = {integer}^3\).

So, \(x\) is the cube of an integer and is clearly an integer.

The correct answer is B.

Question 10
If \(n\) is an integer, and \({0.5}^{n} < 0.001\), which of the following could be the value of \(n\)?
A
\(-10\)
B
\(-2\)
C
\(0\)
D
\(2\)
E
\(10\)
Question 10 Explanation: 
I tell all of my students that it pays to know powers of two. When bacteria grow, or grasshoppers multiply, or radio isotopes decay on the GMAT, they almost always double or get cut in half.

I recommend knowing powers of two up to \({2}^{10}\). Here it pays of in a different context.

\(0.001 = \frac{1}{1000}\) and \({2}^{10} = 1024\). And \(\frac{1}{1024} < \frac{1}{1000}[/latex].

The correct answer is E.

Question 11
Is [latex]a>b\)?

(1) \(a + b\) is postitive.

(2) \({b}^a\) is negative.

A
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.
B
Statement (2) ALONE is sufficient , but statement (1) alone is not sufficient to answer the question asked.
C
BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient.
D
EACH statement ALONE is sufficient to answer the question asked.
E
Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data are needed.
Question 11 Explanation: 
The fact that the sum of \(a\) and \(b\) is positive doesn't tell us anything about the relative values of \(a\) and \(b\).

So statement (1) is insufficient. If an exponential expression is negative we know that the base must be negative and the exponent odd. However, we still don't know anything about the relative values of \(a\) and \(b\). For example, both \({-2}^{-3}\) and \({-2}^3\) are negative: \(-2\) and \(-8\), respectively. In the former case -3 < -2, so a < b. In the latter case 3 > -2, so a > b.

Combining the two statements, we know that \(b\) must be negative, and because the sum of \(a\) and \(b\) must t be positive, \(a\) is positive. Therefore, \(a>b\).

The correct answer is C.

Question 12
Does \( x = y \)?

(1) \({A}^x = {A}^y\).

(2) \(A\) is a positive integer.

A
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.
B
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked.
C
BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient.
D
EACH statement ALONE is sufficient to answer the question asked.
E
Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data are needed.
Question 12 Explanation: 
Statement (1) is insufficient.

Clearly, if \({2}^x = {2}^y\) ,then \(x = y\), but there are several scenarios where \({A}^x = {A}^y\) does not mean that \(x = y\). For instance if \(A = 1\), then \(x\) and \(y\) can take any value because 1 to any power is always 1.

Statement (2) doesn't eliminate the two possibilities mentioned above as 1 and 2 are both positive integers. Further, statement (2) doesn't give us any information that we can combine with statement (1), so statements (1) and (2) together are insufficient.

The correct answer is E.

Question 13
What is the value of \(x\)?

(1) The seventh root of \(x\) is \(3.7\).

(2) \(9493 < x < 9495[/latex].

A
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.
B
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked.
C
BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient.
D
EACH statement ALONE is sufficient to answer the question asked.
E
Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data are needed.
Question 13 Explanation: 
Statement (1) is sufficient.

Given some time and/or a calculator we COULD find [latex]{3.7}^7\).

Statement (2) is not sufficient. It would be sufficient if we knew that \(x\) is an integer, but no such luck.

The correct answer is A.

Question 14
If \(a = 0.567\), \(b = {(0.567)}^2,\)and \(c =\sqrt{0.567}\), which of the following is the correct ordering of \(a\), \(b,\) and \(c\)
A
a < b < c
B
b < a < c
C
c < a < b
D
a < c < b
E
b < c < a
Question 14 Explanation: 
If 0 < A < 1, roots and powers of A are counter intuitive. For numbers in this range roots are larger and exponents are smaller. Consequently, a < c, and b < a. Therefore, b < a < c.

The correct answer is B.

Question 15
What is the units digit of \({37}^{37} + {55}^{55}\)?
A
\(0\)
B
\(2\)
C
\(4\)
D
\(6\)
E
\(8\)
Question 15 Explanation: 
A GMAT Classic! The units digit of any power of \(55\) (or \(555\) or \(1,000,000,005\) or any integer ending in \(5\)) has a units digit of \(5\). The units digit sequence for powers of any integer ending in \(7\) is \(7, 9, 3, 1, 7, 9, 3, 1\), and so on - repeating the same pattern until the heat death of the universe. When we divide \(37\) by \(4\) we get a quotient of \(9\) and a remainder of \(1\): i.e. \(37 = (9)(4) + 1\). So, the patter repeats nine times and travels one more step landing on seven. The sum of an integer ending in \(5\) and an integer ending in \(7\) has a units digit of \(2\). The correct answer is B.
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 15 questions to complete.
←
List
→
Return
Shaded items are complete.
12345
678910
1112131415
End
Return
You have completed
questions
question
Your score is
Correct
Wrong
Partial-Credit
You have not finished your quiz. If you leave this page, your progress will be lost.
Correct Answer
You Selected
Not Attempted
Final Score on Quiz
Attempted Questions Correct
Attempted Questions Wrong
Questions Not Attempted
Total Questions on Quiz
Question Details
Results
Date
Score
Hint
Time allowed
minutes
seconds
Time used
Answer Choice(s) Selected
Question Text
All done
Need more practice!
Keep trying!
Not bad!
Good work!
Perfect!

Related

Filed Under: GMAT Tagged With: Exponents and Roots, Question Bank, Quiz

Primary Sidebar

Absolute Value Algebra Arithmetic Automaticity Back Solving chall Challenge Problem Circles Combinatorics Data Sufficiency Divisibility Double Set Matrix Ex Exponents and Roots Factorials Factoring FDP's Geometry GMAT GMAT Quant GMAT Verbal Grammar 101 Inequalities Khan Academy LCM MathFactor Math Facts Mixrtures Number Properties Official Guide Overlapping Sets Picking Numbers Polygons POTD Problem of the Day Problems of the Day Problem Solving Problem Solving Strategy Pythagorean Triples Quadratic Equations Quantitative Comparison Question Bank Quiz Quizzes Rate Problems Remainder Sentence Correction Strategy Study Tips Subject-Verb Agreement Triangles Unofficial Guide Venn Diagrams VIC Video Word Problems
Beat The GMATAdd your site

hmb supplement
The GMAT/MBA LibraryAdd your site

hmb supplement

Copyright © 2023 · Academy Pro on Genesis Framework · WordPress · Log in